Study reports breakthrough in measuring plant improvements to boost food production

CHAMPAIGN (May 16, 2019) — An international team is using advanced tools to develop crops that give farmers more options for sustainably producing more food on less land. To do this, thousands of plant prototypes must be carefully analyzed to figure out which genetic tweaks work best. Today, in a special issue of the journal Remote Sensing of Environment, scientists have shown they have a new technology that can more quickly scan an entire field of plants to capture improvements in their natural capacity to harvest energy from the sun.

“This method allows us to measure improvements we have engineered in a plant’s photosynthesis machinery in about ten seconds, compared to the traditional method that takes up 30 minutes,” Katherine Meacham-Hensold, a postdoctoral researcher at the University of Illinois, who led this work for a research project called Realizing Increased Photosynthetic Efficiency (RIPE). “That’s a major advance because it allows our team to analyze an enormous amount of genetic material to efficiently pinpoint traits that could greatly improve crop performance.”

RIPE, which is led by Illinois, is engineering crops to be more productive by improving photosynthesis, the natural process all plants use to convert sunlight into energy and yield. RIPE is supported by the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), and the U.K. Government’s Department for International Development (DFID).

The traditional method for assessing photosynthesis analyzes the exchange of gases through the leaf; it provides a huge amount of information, but it takes 30 minutes to measure each leaf. A faster, or “higher-throughput” method, called spectral analysis, analyzes the light that is reflected back from leaves to predict photosynthetic capacity in as little as 10 seconds.

“The question we set out to answer is: can we apply spectral techniques to predict photosynthetic capacity when we have genetically altered the photosynthetic machinery,” said RIPE research leader Carl Bernacchi, a scientist with the U.S. Department of Agriculture, Agricultural Research Service, who is based at Illinois’ Carl R. Woese Institute for Genomic Biology. “Before this study, we didn’t know if changing the plant’s photosynthetic pathways would change the signal that is detected by spectral measurements.”

Although they can prove this method can be used to screen crops that have been engineered to improve photosynthesis, researchers have not uncovered what spectral analysis measures exactly. “Spectral analysis requires custom-built models to translate spectral data into measurements of photosynthetic capacity that must be recreated each year,” Meacham said. “Our next challenge is to figure out what we are measuring so that we can build predictive models that can be used year after year to compare results over time.”

“While there are still hurdles ahead, spectral analysis is a game-changing technique that can be used to assess a variety of photosynthetic improvements to single out the changes that are most likely to substantially, and sustainably, increase crop yields,” said RIPE executive committee member Christine Raines, a professor of plant molecular physiology at the University of Essex, whose engineered crops were analyzed with the technique. “These tools can help us speed up our efforts to develop high-yielding crops for farmers working to help feed the world.”

###

Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun’s energy into food to sustainably increase worldwide food productivity, with support from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research, and the U.K. Government’s Department for International Development.

RIPE is led by the University of Illinois in partnership with The Australian National University, Chinese Academy of Sciences, Commonwealth Scientific and Industrial Research Organisation, Lancaster University, Louisiana State University, University of California, Berkeley, University of Essex, and U.S. Department of Agriculture, Agricultural Research Service.

Editor’s Notes:

The paper “High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity” is published by the journal Remote Sensing of Environment is available online or by request. Co-authors of this publication include Christopher Montes; Jin Wu; Kaiyu Guan; Peng Fu; Elizabeth Ainsworth; Taylor Pederson; Caitlin Moore; Kenny L Brown; and Christine Raines.

CONTACT:

Claire Benjamin, RIPE, claire@illinois.edu, +1-217-244-0941
Sarah Goldberg, FFAR, sgoldberg@foundationfar.org, 202-624-0704

Overcoming Water Scarcity

Overcoming Water Scarcity

Continue

Agriculture uses 70 percent of the world’s accessible freshwater. FFAR’s 2016-2018 Overcoming Water Scarcity Challenge Area addressed water use efficiency in agriculture by developing water conservation and reuse technologies, improving crop and livestock breeds, creating improved agronomic practices, increasing the social and economic tractability of conservation practices and enhancing the efficacy of Extension services.

FFAR’s Sustainable Water Management Challenge Area builds on earlier work to increase water availability and water efficiency for agricultural use, reduces agricultural water pollution and develops water reuse technologies.

Healthy Soils, Thriving Farms

Healthy Soils, Thriving Farms

Continue

FFAR’s 2016-2018 Healthy Soils, Thriving Farms Challenge Area increased soil health by building knowledge, fueling innovation, and enabling adoption of existing or new innovative practices that improve soil health.

The Soil Health Challenge Area advances existing research and identifies linkages between farm productivity and soil health, while also addressing barriers to the adoption of soil health practices.

Protein Challenge

Protein Challenge

Continue

FFAR’s 2016-2018 Protein Challenge Area sought to improve the environmental, economic and social sustainability of diverse proteins.

The Advance Animal Systems challenge area supports sustainable animal production through environmentally sound productions practices and advancement in animal health and welfare. Additionally, the Next Generation Crops Challenge Area develops non-traditional crops, including plant-based proteins, and creates new economic opportunities for conventional crops to increase future crop diversity and farm profitability.

Food Waste and Loss

Food Waste and Loss

Continue

About 40 percent of food in the US, or $161 billion each year, is lost or wasted. FFAR’s 2016-2018 Food and Waste Loss Challenge Area addressed the social, economic and environmental impacts from food waste and loss through research that developed of novel uses for agricultural waste, improved storage and distribution, supported tracking and monitoring, minimized spoilage through pre- and post-harvest innovations and changed behaviors to reduce food waste

FFAR’s current Health-Agriculture Nexus Challenge Area addresses food waste and loss and supports innovative, systems-level approaches to reduce food and nutritional insecurity and improve human health in the US and globally.

Forging the Innovation Pathway to Sustainability

Continue

Supporting innovation is necessary for sustainable results. Over the last 50 years, farmers have tripled global food production thanks to agricultural innovations. Forging the Innovation Pathway to Sustainability was a 2016-2018 Challenge Area that focused on understanding the barriers and processes that prevented the adoption of technology and research results into sustainable practices.

Urban Food Systems

Urban Food Systems

Continue

The 2016-2018 Urban Food Systems Challenge Area addressed feeding urban populations through urban and peri-urban agriculture and augmenting the capabilities of our current food system.

The Urban Food Systems Challenge Area continues this work and enhances our ability to feed urban populations.

Making My Plate Your Plate

Continue

FFAR’s 2016-2018 Making My Plate Your Plate Challenge Area focused on helping Americans meet the USDA 2015 Dietary Guideline recommendations for fruit and vegetable consumption, including research to both produce and provide access to nutritious fruits and vegetables.

FFAR’s current Health-Agriculture Nexus Challenge Area supports innovative, systems-level approaches to reduce food and nutritional insecurity and improve human health in the US and globally.