Missing link in algal photosynthesis found, offers opportunity to improve crop yields

BATON ROUGE, La (August 6, 2019) —  Photosynthesis is the natural process plants and algae utilize to capture sunlight and fix carbon dioxide into energy-rich sugars that fuel growth, development, and in the case of crops, yield. Algae evolved specialized carbon dioxide concentrating mechanisms (CCM) to photosynthesize much more efficiently than plants. This week, in the journal Proceedings of the National Academy of Sciences, a team from Louisiana State University (LSU) and the University of York discovered a previously unexplained step in the CCM of green algae—which is key to developing a functional CCM in food crops to boost productivity.

“Most crops are plagued by photorespiration, which occurs when Rubisco—the enzyme that drives photosynthesis—cannot differentiate between life-sustaining carbon dioxide and oxygen molecules that waste large amounts of the plant’s energy,” said James Moroney, the Streva Alumni Professor at LSU and member of Realizing Increased Photosynthetic Efficiency (RIPE). “Ultimately, our goal is to engineer a CCM in crops to surround Rubisco with more carbon dioxide, making it more efficient and less likely to grab oxygen molecules.

Led by the University of Illinois, RIPE is an international research project that is engineering crops to be more productive by improving photosynthesis with support from the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research (FFAR), and the U.K. Government’s Department for International Development (DFID).

Whereas carbon dioxide diffuses across cell membranes relatively easily, bicarbonate (HCO3-) diffuses about 50,000 times slower due to its negative charge. The green algae Chlamydomonas reinhardtii, nicknamed Chlamy, transports bicarbonate across three cellular membranes into the compartment that houses Rubisco, called a pyrenoid, where the bicarbonate is converted back into carbon dioxide and fixed into sugar.

“Before now, we did not understand how bicarbonate crossed the third threshold to enter the pyrenoid,” said Ananya Mukherjee, who led this work as a graduate student at LSU before joining the University of Nebraska–Lincoln as a postdoctoral researcher. “For years, we tried to find the missing component, but it turns out there are three transport proteins involved in this step—which were the missing link in our understanding of the CCM of Chlamydomonas reinhardtii.

“While other transport proteins are known, we speculate that these could be shared with crops more easily because Chlamy is more closely related to plants than other photosynthetic algae, such as cyanobacteria or diatoms,” said Luke Mackinder, a lecturer at York who collaborated with the RIPE team on this work with support from the Biotechnology and Biological Sciences Research Council (BBSRC) and the Leverhulme Trust.

Creating a functional CCM in crops requires three things: a compartment to store Rubisco, transporters to bring bicarbonate to the compartment, and specialized enzymes to turn bicarbonate into carbon dioxide.

In a 2018 study, RIPE colleagues at The Australian National University demonstrated that they could add a compartment called a carboxysome, similar to a pyrenoid, in crops. This study completes the list of possible transport proteins that could shuttle bicarbonate from outside the cell to this carboxysome structure in crops’ leaf cells.

“Our research suggests that creating a functional CCM in crops could help crops conserve more water and could significantly reduce the energy-taxing process of photorespiration in crops—that worsens as temperatures rise,” Moroney said. “The development of climate-resilient crops that can photosynthesize more efficiently will be vital to protecting our food security.”

###

Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun’s energy into food to sustainably increase worldwide food production, with support from the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research, and the U.K. Government’s Department for International Development.

RIPE is led by the University of Illinois in partnership with The Australian National University, Chinese Academy of Sciences, Commonwealth Scientific and Industrial Research Organisation, Lancaster University, Louisiana State University, University of California, Berkeley, University of Essex, and U.S. Department of Agriculture, Agricultural Research Service. 

Editor’s Notes:

“Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtiiis published by the journal Proceedings of the National Academy of Sciences and available online or by request.

CONTACT: Colleen Klemczewski, 202-204-2605, cklemczewski@foundationfar.org

Overcoming Water Scarcity

Overcoming Water Scarcity

Continue

Agriculture uses 70 percent of the world’s accessible freshwater. FFAR’s 2016-2018 Overcoming Water Scarcity Challenge Area addressed water use efficiency in agriculture by developing water conservation and reuse technologies, improving crop and livestock breeds, creating improved agronomic practices, increasing the social and economic tractability of conservation practices and enhancing the efficacy of Extension services.

FFAR’s Sustainable Water Management Challenge Area builds on earlier work to increase water availability and water efficiency for agricultural use, reduces agricultural water pollution and develops water reuse technologies.

Healthy Soils, Thriving Farms

Healthy Soils, Thriving Farms

Continue

FFAR’s 2016-2018 Healthy Soils, Thriving Farms Challenge Area increased soil health by building knowledge, fueling innovation, and enabling adoption of existing or new innovative practices that improve soil health.

The Soil Health Challenge Area advances existing research and identifies linkages between farm productivity and soil health, while also addressing barriers to the adoption of soil health practices.

Protein Challenge

Protein Challenge

Continue

FFAR’s 2016-2018 Protein Challenge Area sought to improve the environmental, economic and social sustainability of diverse proteins.

The Advance Animal Systems challenge area supports sustainable animal production through environmentally sound productions practices and advancement in animal health and welfare. Additionally, the Next Generation Crops Challenge Area develops non-traditional crops, including plant-based proteins, and creates new economic opportunities for conventional crops to increase future crop diversity and farm profitability.

Food Waste and Loss

Food Waste and Loss

Continue

About 40 percent of food in the US, or $161 billion each year, is lost or wasted. FFAR’s 2016-2018 Food and Waste Loss Challenge Area addressed the social, economic and environmental impacts from food waste and loss through research that developed of novel uses for agricultural waste, improved storage and distribution, supported tracking and monitoring, minimized spoilage through pre- and post-harvest innovations and changed behaviors to reduce food waste

FFAR’s current Health-Agriculture Nexus Challenge Area addresses food waste and loss and supports innovative, systems-level approaches to reduce food and nutritional insecurity and improve human health in the US and globally.

Forging the Innovation Pathway to Sustainability

Continue

Supporting innovation is necessary for sustainable results. Over the last 50 years, farmers have tripled global food production thanks to agricultural innovations. Forging the Innovation Pathway to Sustainability was a 2016-2018 Challenge Area that focused on understanding the barriers and processes that prevented the adoption of technology and research results into sustainable practices.

Urban Food Systems

Urban Food Systems

Continue

The 2016-2018 Urban Food Systems Challenge Area addressed feeding urban populations through urban and peri-urban agriculture and augmenting the capabilities of our current food system.

The Urban Food Systems Challenge Area continues this work and enhances our ability to feed urban populations.

Making My Plate Your Plate

Continue

FFAR’s 2016-2018 Making My Plate Your Plate Challenge Area focused on helping Americans meet the USDA 2015 Dietary Guideline recommendations for fruit and vegetable consumption, including research to both produce and provide access to nutritious fruits and vegetables.

FFAR’s current Health-Agriculture Nexus Challenge Area supports innovative, systems-level approaches to reduce food and nutritional insecurity and improve human health in the US and globally.