Refine Results
Priority Areas
Consortia
Program
Location
Year

Genetic incorporation of physiological mechanisms of high night temperature tolerance into rice improvement programs 

Year Awarded  2021

FFAR award amount   $384,369

Total award amount   $768,738

Location   College Station, TX

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   Texas A&M AgriLife

Rice, a major global food crop, is susceptible to heat stress losses in yield. Nighttime heat stress affects processes throughout the rice plant, including photosynthesis, respiration, nutrient transfer and reproduction. This research is enhancing two targeted rice genes that can provide increased tolerance when under heat stress. The first gene alters specific plant hormone responses, and the second gene enhances nutrient transfer. The project will also distribute low-cost methods for screening rice and other crops for heat stress responses based on physiological traits, aiding breeding programs in low-income countries.

Advancing methods for accelerated heat tolerance selection in peanut 

Year Awarded  2021

FFAR award amount   $274,754

Total award amount   $549,507

Location   Athens, GA

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   University of Georgia

Peanut is a high-protein food crop grown mostly in tropical and subtropical regions, and it is directly threatened by increasing global temperature. This research is studying multiple peanut genotypes and varieties to identify genes, molecular mechanisms and photosynthetic processes related to heat stress and tolerance. The researchers are developing an automated model, the Peanut-ThermoTool, to indicate heat tolerance in peanut and rank genotypes for heat tolerance, predicting their capabilities to function during and recover after a period of heat stress. The genotypes possessing heat-tolerance traits will be available in the germplasm collection, serving as genetic resources for heat tolerance in breeding programs.

Exploiting conserved gene regulation mechanisms for genome-wide breeding for heat & broad-spectrum disease tolerance in rice 

Year Awarded  2021

FFAR award amount   $470,459

Total award amount   $940,917

Location   Fort Collins, CO

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   Colarado State University

Developing heat and disease resistant crop varieties takes a long time, particularly because these traits are complex and controlled by multiple genes. In addition, reliable genetic markers identifying relevant traits are not readily available, making breeding more challenging. This research is developing a strategy to generate reliable markers of stress-response DNA sequences to efficiently activate genes involved in heat tolerance and disease defenses in rice. The genetic markers could be applied in any crop breeding program, whether in low- or high-income countries.

Improving common bean and cowpea productivity and nutritional quality under conditions of reproductive-stage high-temperature stress 

Year Awarded  2021

FFAR award amount   $379,800

Total award amount   $7,229,356

Location   Davis, CA

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   University of California Davis

Common bean and cowpea are important legumes for food and nutritional security. These crops are susceptible to high temperatures, particularly during their reproductive stage and flower bud formation. This research is determining the effects of different high-temperature stresses on productivity, nutritional quality and physiological traits in genotypes of common bean. The team is also mapping genetic regions affecting heat tolerance traits and screening for these traits in locations with different temperatures and humidity.

FFAR Grant Examines Carbon Farming Effect on Soil Health 

FFAR Grant Addressing Surface and Groundwater Pollution on Farms 

International Efforts Combat Crop-Destroying Weeds 

Initiative to Reduce Greenhouse Gas Emissions in Agriculture Marks One Year Anniversary, Welcomes First Partner 

FFAR Pioneers Vertical Farming to Grow Food in Cities, Other Nontraditional Spaces 

ICASA Seeks Research to Improve Antibiotic Stewardship in Pigs and Beef Cattle