Tool Can be Scaled Up To National & Global Levels To Reduce Emissions
To compute the vast amount of information from millions of individual farms, the team is using supercomputing platforms available at the National Center for Supercomputing Applications.
Although locally tested in the Midwest, the new approach can be scaled up to national and global levels and help the industry grasp the best practices for reducing emissions. “The strength of our tool is that it is both generic and scalable, and it can be potentially applied to different agricultural systems in any country,” said Bin Peng, co-author of the study and an assistant professor at the University of Illinois Crop Sciences Department.
“There are many effective farming practices that reduce GHG emissions, but if everyone measures them differently, we’ll never be able to objectively understand how well these practices work,” added Peng. “This research helps agriculture stakeholders ‘speak the same language’ about farmland greenhouse gas emissions and will foster more scientific rigor in estimating those emissions.”
The study also details how emissions and agricultural practices data can be cross-checked against economic, policy and carbon market data to find best-practice and realistic GHG mitigation solutions locally to globally – especially in economies struggling to farm in an environmentally conscious manner.
“The real beauty of our work is that it is both very generic and scalable, meaning it can be applied to virtually any agricultural system in any country to obtain reliable emissions data using our targeted procedure and techniques, which is what we are expanding to do right now” Guan concluded.
Scientific Publications
University of Illinois Urbana-Champaign News, Earth-Science Reviews and Nature Communications.