Livestock producers make several critical decisions daily that impact the health of animals and the farmer’s bottom line. Yet the supply of quality livestock technicians and managers who can make these decisions is decreasing across all sectors of animal agriculture, especially in the United States swine industry. Precision livestock farming technologies offer an interesting opportunity to provide support in making accurate decisions that positively impact the productivity and sustainability of swine operations. In my Ph.D. research at the University of Missouri–Columbia, we are striving to build tools to help pig farmers proactively and positively impact pig survivability in wean-to-finish pig barns.
Many factors contribute to increases or decreases in mortality rates in commercial pig production, such as genetic selection programs, environmental variation, management protocols and infectious diseases. To reduce mortality rates in a wean-to-market pig barn, intervention in the form of vaccination, injectable or broad-use water medication, ventilation, facility modification or other changes in management protocols are required when one or more factors negatively impact pig health and performance. Historically, deciding when to intervene on the pig, room or farm level was based on a visual appraisal of pig health and performance or barn climatic conditions by herd managers or veterinarians. The increasing development, acceptance and implementation of modern technologies in animal agriculture have allowed “big data” collection and continuous monitoring of individual animals, farm subsections (i.e., rooms or barns) or entire farms. In general, these technologies are non-invasive and fully automated. They’re comprised of platforms based on digital images, sounds or sensors. Robust and efficient systems to collect, store, analyze and communicate data from sensors and computer vision applications have the potential to enhance management practices, product quality and animal health and well-being.