close up of green corn stalks growing in soil

Crop Modeling Project Awarded $5M

  • Next Generation Crops

URBANA and WASHINGTON — The University of Illinois’ Crops in silico (Cis) project received a $5 million grant from the Foundation for Food & Agriculture Research (FFAR) to continue building a computational platform that integrates multiple models to study a whole plant virtually.

“Four crops – corn, soybean, sorghum and wheat – account directly or indirectly for about 60 percent of human calories. Yet they are susceptible to declining yields due to the impending stresses of climate change, including water shortages, elevated carbon dioxide levels and soil degradation,” said Amy Marshall-Colón, U of I Assistant Professor of Plant Biology and the Principal Investigator for the new four-year grant.

With the global population increasing and the climate continuing to change, understanding how crops respond and may be adapted to environmental changes is needed to address current and future food insecurity. Developing crops using traditional methods is research, labor and cost intensive. However, Cis allows researchers to quickly determine and test characteristics that help crops thrive in specific environments. This modeling allows researchers to conduct more experiments than can be realistically achieved in a field. With Cis, billions of possible changes and combinations of changes can be tested to achieve more productive and sustainable crops in different environments.

Researchers have extensive knowledge about models depicting individual processes that drive plant growth and development and how plants utilize resources. Until now, researchers have yet to combine this knowledge into whole plant models that mimic biology. This project integrates diverse computational models. Using the whole system model, researchers will determine how crops respond to environmental changes at all biological levels, from cellular to ecosystem-level interactions.

FFAR was created to advance innovative science that addresses food and agriculture’s most pressing challenges. This project is a perfect example of using technological advances to identify how crops will respond to environmental stressors and how to help the crops thrive despite environmental changes – all while saving time, money and making this platform publicly available. Supplying ample food for a burgeoning population will depend on transformative projects like Crops in silico. Sally Rockey, Ph.D.
Executive Director Emeritus

This grant extends the original project, which created a platform to link computational models to simulate plant growth and development. The new funding will allow researchers to quickly and accurately test how a plant responds to a combination of changes. The grant also makes the entire platform available to the public.

Co-Investigators on the grant include Illinois’ Matthew Turk, Assistant Professor of Astronomy and Research Scientist at the National Center for Supercomputing Applications (NCSA); Stephen P. Long, Professor of Plant Biology and Crop Sciences; Kaiyu Guan, Assistant Professor of Natural Resources and Environmental Sciences; and Meagan Lang, NCSA Research Scientist. Collaborators from other institutes include Jonathan Lynch, Professor of Plant Science at Pennsylvania State University; Bedrich Benes, Professor of Computer Graphics Technology at Purdue University; Lee Sweetlove, Professor of Plant Sciences at Oxford University; and James Schnable, Assistant Professor of Agronomy and Horticulture at the University of Nebraska.

“This approach has already identified opportunities that resulted in successful field trials by optimizing single processes like photosynthesis or single organs like root architecture,” said Steve Long. “By scaling up our work to whole plants and fields, we can move years ahead in optimizing plants for different growing conditions.”

The Institute for Sustainability, Energy and Environment at Illinois provided $350,000 in seed funding to establish the original Crops in silico project in 2015 in collaboration with NCSA, which has provided $212,000 in seed funding, designed the Cis infrastructure and interface and developed many of the tools used to visualize crops and simulate conditions. Marshall-Colón and Turk received a $274,000 grant from FFAR in 2017 to extend this work.

“We are so grateful for the support we have received from FFAR, iSEE and NCSA,” Marshall-Colón said.


Foundation for Food & Agriculture Research

The Foundation for Food & Agriculture Research (FFAR) builds public-private partnerships to fund bold research addressing big food and agriculture challenges. FFAR was established in the 2014 Farm Bill to increase public agriculture research investments, fill knowledge gaps and complement USDA’s research agenda. FFAR’s model matches federal funding from Congress with private funding, delivering a powerful return on taxpayer investment. Through collaboration and partnerships, FFAR advances actionable science benefiting farmers, consumers and the environment.

Connect: @FoundationFAR | @RockTalking

Media Contacts:
Tony Mancuso, Communications Director, Institute for Sustainability, Energy and Environment, 217-300-3546,
Tiffany Jolley, Strategic Content Specialist, National Center for Supercomputing Applications, 256-225-3879,
Sarah Goldberg, FFAR, 202-624-0704,

Subscribe to our newsletter for the latest updates.