FFAR news default image. FFAR news default image.

FFAR Grant Reduces Need for Synthetic Fertilizer

WASHINGTON

WASHINGTON (December 15, 2020) – Plants need nitrogen to grow. Although the majority of earth’s atmosphere is made up of nitrogen, plants cannot access this form of nitrogen. Instead, farmers must provide nitrogen in other ways, such as expensive synthetic nitrogen fertilizers. Growers of major cereal crops, such as wheat and corn, heavily rely on these fertilizers – which can cost farmers collectively $5 billion a year. The Foundation for Food & Agriculture Research (FFAR) awarded a $927,581 Seeding Solutions grant to the University of California, Davis (UC Davis) to study a Mexican corn variety, Sierra Mixe, that obtains atmospheric nitrogen with the help of microbes, reducing the need for synthetic fertilizers. Benson Hill provided matching funds for a total $1,855,162 investment.

Portrait of Sally Rockey.

The air around us contains nutrients ripe for picking by these next generation crops. Harnessing these nutrients directly through the crop and its associated microbial system would drastically reduce growing costs for farmers. This promising research offers a pioneering new way to fertilize crops while protecting soil health.

Sally Rockey, Ph.D.
Executive Director Emeritus

Synthetic fertilizer is not only expensive, but it is also environmentally costly. Synthetic fertilizers erode soil, reduce soil’s ability to hold nutrients and require greater amounts of water to grow crops. The process for creating synthetic nitrogen fertilizer is responsible for an estimated three percent of carbon dioxide emissions. However, Sierra Mixe offers a possible solution to reliance on synthetic fertilizers. This corn plant has a system of airborne roots, in addition to underground roots. The airborne roots secrete a fluid that hosts microbes, which provide the corn with 30 to 82 percent of its nitrogen nutrition from the atmosphere.

UC Davis researchers, led by Dr. Alan Bennett, are studying Sierra Mixe to determine the process of how the microbial community hosted by the plant provides atmospheric nitrogen to the plant. The research team is breeding the crop and studying the individual plants that are the most and least successful at absorbing atmospheric nitrogen to isolate the genes responsible for this trait. They are also investigating the genomic sequences of the microbes in the plant’s secretions to determine their role in capturing atmospheric nitrogen, as well as how the microbes and plants interact to provide the nitrogen to the plant.

Dr. Bennett commented that “it looks like this is an ancestral trait that was amplified in certain landraces of corn and progressively lost from modern corn varieties. Our research is attempting to identify the regions of the corn landrace genome that determines its ability to associate with nitrogen-fixing microbes so that we have a chance of transferring the trait to modern varieties.”

The researchers are using this information to determine whether these nitrogen-capturing traits can be transferred to conventional corn crops grown in temperate conditions and possibly to other cereal crops. Encouraging crops’ intake of atmospheric nitrogen will not only provide economic and environmental benefits to corn growers in the U.S., it could benefit growers in developing countries who may not have physical or economic access to synthetic fertilizer.

###

Foundation for Food & Agriculture Research

The Foundation for Food & Agriculture Research (FFAR) builds public-private partnerships to fund bold research addressing big food and agriculture challenges. FFAR was established in the 2014 Farm Bill to increase public agriculture research investments, fill knowledge gaps and complement the U.S. Department of Agriculture’s research agenda. FFAR’s model matches federal funding from Congress with private funding, delivering a powerful return on taxpayer investment. Through collaboration and partnerships, FFAR advances actionable science benefiting farmers, consumers and the environment.

Connect: @FoundationFAR | @RockTalking

About Benson Hill

Benson Hill moves food forward with Cloud Biology® and the CropOS platform, a leading food innovation engine that combines data science and machine learning with biology and genetics. Benson Hill empowers innovators to unlock nature’s genetic diversity from plant to plate, with the purpose of creating healthier, great-tasting food and ingredient options that are both widely accessible and sustainable. More information can be found at bensonhill.com or on Twitter at @bensonhillinc.

Media Contact:

Benson Hill | Melanie Bernds | Mbernds@bensonhill.com

About the University of California, Davis

UC Davis is a public institution, land-grant university and pioneer in interdisciplinary problem-solving. Its four colleges, five professional schools, more than 100 academic majors, and 86 graduate programs make it the most comprehensive of all ten University of California campuses. UC Davis is ranked No. 1 in the U.S. in Plant Sciences.

Connect to Plant Sciences:@UCDavisPlants | Plant Sciences news

ID: CA19-SS-0000000100