Refine Results
Priority Areas
Consortia
Program
Location
Year

Integrating Genomics, Milk Spectrometry & Microbial Manipulations to Mitigate Enteric Methane Emissions from Dairy Cattle 

Year Awarded  2023

FFAR award amount   $2,301,499

Total award amount   $3,301,496

Location   Madison, WI

Matching Funders   Innovation Center for U.S. Dairy, ADM, the Council on Dairy Cattle Breeding (CDCB), Elanco, Genus plc, JBS USA, the National Dairy Herd Information Association, Nestlé and the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC)

Grantee Institution   University of Wisconsin–Madison

Cows and other ruminant animals produce enteric methane as part of their natural digestive process. This methane is the single largest source of direct greenhouse gases in the dairy sector. University of Wisconsin–Madison researchers are combining interventions addressing breeding, data on milk composition and rumen microbes to selectively breed U.S. dairy cattle with lower emissions.

Hydrogen Production and Hydrogen Utilization in the Rumen of Beef & Dairy Cattle: Key Rumen Microbiome Measurements to Understand Mechanisms Controlling Methanogenesis & Mitigating Enteric Methane Emissions 

Year Awarded  2023

FFAR award amount   $1,066,820

Total award amount   $3,221,254

Location   Champaign, IL

Matching Funders   Innovation Center for U.S. Dairy, ADM, the Council on Dairy Cattle Breeding (CDCB), Elanco, Genus plc, JBS USA, the National Dairy Herd Information Association, Nestlé, the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) and the University of Illinois Urbana-Champaign

Grantee Institution   University of Illinois Urbana-Champaign

Cows and other ruminant animals produce enteric methane as part of their natural digestive process. This methane is the single largest source of direct greenhouse gases in the beef and dairy sectors. University of Illinois Urbana-Champaign researchers are studying how diets and different additives affect hydrogen production, which is essential to producing enteric methane, and how changes in hydrogen affect the amount of enteric methane produced.

SHIC Wean-to-Harvest Biosecurity Program Funds Additional Research 

Evaluation of the Efficacy, Agronomic Fit & Environmental Fate of Biopesticides for Management of Economically Important Diseases & Arthropod Pests of Hemp 

Year Awarded  2023

FFAR award amount   $210,000

Total award amount   $420,000

Location   Geneva, NY

Matching Funders   BioWorks

Because federal laws restricted hemp cultivation and research until recently, commercial hemp production lacks best practices, including effectively and safely managing pests and diseases. Academic and industry partners are collaborating to identify biopesticides – biologically derived crop protection products – that can control hemp’s major pest and disease threats. Researchers are studying the effectiveness of biopesticides, their compatibility with other crop protection products and the ability of hemp plants to tolerate biopesticide applications.

Improving Layer Hen Welfare with Better Bone Health 

A holistic approach to improving keel bone health of breeders and commercial layer hens 

Year Awarded  2023

FFAR award amount   $1,499,686

Total award amount   $2,999,372

Location   Davis, CA

Program   Layer Hen Keel Bone Health Program

Matching Funders   Hy-Line International; Open Philanthropy

Grantee Institution   University of California Davis

This research is bringing an interdisciplinary approach to the complex, multi-faceted challenge of keel bone damage. The research team is aiming to decrease the occurrence of keel bone damage by examining the birds’ housing environments and assessing the key relation and role of genetics. The researchers are identifying genetic markers associated with keel bone damage in breeding flocks raised under different housing environments and improving genetic selection to promote resistance to keel bone fractures. They are also evaluating the effects of housing design interventions on the development, type and prevalence of keel bone damage. Finally, the researchers are exploring alternative housing designs and conducting economic analyses to determine the costs and gains from the proposed adjustments to breeding and housing designs.

Using the power of functional genomics and genetics to reduce keel bone damage 

Year Awarded  2023

FFAR award amount   $1,489,326

Total award amount   $3,991,105

Location   Edinburgh, United Kingdom

Program   Layer Hen Keel Bone Health Program

Matching Funders   Hy-Line International; Lohmann Breeders GmbH; Open Philanthropy; Roslin Institute, University of Edinburgh; Swedish University of Agricultural Sciences; Universidad de Granada; University of Alberta

Grantee Institution   University of Edinburgh

The Layer Hen Keel Bone Health program seeks to improve welfare in commercial laying hens and increase farmer productivity. This research team is using x-ray images and machine learning to refine and validate the measurements of bone quality and keel damage in living hens to inform the selection of hens to reduce keel bone damage. This work is also examining if breeding programs for improved keel health need to vary depending upon poultry housing design.

Developing Tomato Lines Resistant to Broomrape, a Critical World-wide Pest 

Year Awarded  2023

FFAR award amount   $232,728

Total award amount   $465,456

Location   Davis, CA

Program   Seeding Solutions

Matching Funders   University of California, Davis

Grantee Institution   University of California, Davis

Branched broomrape is a parasitic weed threatening the United States’ supply of processing tomatoes. The weed can completely decimate tomato crops, creating significant economic losses for growers. Current processing tomato varieties are not resistant to the weed. University of California, Davis researchers are developing a tomato variety with branched broomrape resistance.

Cattle Industry Consortium Awards First Grant to Curb Enteric Methane Emissions 

Development of Novel Methanogenesis Inhibitors in Ruminants 

Year Awarded  2023

FFAR award amount   $324,519

Total award amount   $758,776

Location   State College, PA

Matching Funders   Innovation Center for U.S. Dairy, ADM, the Council on Dairy Cattle Breeding (CDCB), Elanco, Genus plc, JBS USA, the National Dairy Herd Information Association, Nestlé and the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC)

Grantee Institution   Penn State

Cows and other ruminant animals produce enteric methane as part of their natural digestive process. This methane is the single largest source of direct greenhouse gases in the beef and dairy sectors. Addressing enteric methane emissions is critical to slowing the effects of climate change while also helping the dairy and beef sectors meet their sustainability goals. This project aims to develop feed additive options that will deliver the greatest enteric methane mitigation potential that is practical for producers.