Refine Results
Priority Areas
Consortia
Program
Location
Year

Consumer Understanding of Advances in Animal Welfare 

Year Awarded  2017

FFAR award amount   $50,000

Total award amount   $100,000

Location   West Lafayette, IN

Matching Funders   Food Marketing Institute Foundation and the Animal Agriculture Alliance

Grantee Institution   Purdue University

Consumers are demanding cage-free egg production and slow-growth broiler chickens and farmers, ranchers and agricultural businesses are responding. However, producers must first understand consumer knowledge, beliefs and willingness-to-pay for these attributes. Purdue University researchers are employing choice modeling techniques to estimate diversity in consumer preferences and willingness-to-pay for cage-free eggs and slow-growth broilers now and in the future.

Automated Individual Poultry Vaccination to Aid in Antibiotic Removal 

Year Awarded  2017

FFAR award amount   $800,000

Total award amount   $1,600,292

Location   Raleigh, NC

Matching Funders   Merck Animal Health

Grantee Institution   Applied LifeSciences & Systems (ALS-S)

Commercial hatcheries often spray vaccines on chicks to prevent disease. This method is imprecise and leaves about 5-20 percent of chicks vulnerable to disease. When disease breaks out, producers must then use antibiotics to treat secondary infections, which reduces overall productivity. By using imaging and robotics technology, Applied Lifesciences & Systems Poultry Inc. is developing a device for vaccinating newly hatched chickens, enhancing bird health, increasing poultry production and reducing the need for antibiotics.

A Practical Phenotypic Solution to Reduce Keel & Skeletal Bone Damage in Laying Hens 

Year Awarded  2017

FFAR award amount   $243,296

Total award amount   $486,594

Location   Edinburgh, United Kingdom

Matching Funders   Open Philanthropy Project

Grantee Institution   University of Edinburgh

Keel, or breastbone fractures, which cause pain and decrease egg production, are a challenge to raising hens in cage-free housing systems. To improve the health and productivity of egg-laying hens and prevent these fractures, University of Edinburgh researchers are developing an x-ray-based measurement system for on-farm use to breed hens with stronger bones.  

Addressing keel bone fractures in laying hens housed in cage-free aviary systems using nutrition and management interventions 

Year Awarded  2017

FFAR award amount   $490,093

Total award amount   $490,093

Location   West Lafayette, IN

Matching Funders   Open Philanthropy Project

Grantee Institution   Purdue University

Keel, or breastbone fractures are painful and decrease egg production and are a common concern for cage-free hens. Purdue University researchers are assessing the impact of nutritional interventions on the gut microbiome and testing management interventions to reduce keel bone fractures in laying hens housed in cage-free systems.

Renewal: RIPE: Realizing Increased Photosynthetic Efficiency for Sustainable Increases in Crop Yield 

Year Awarded  2017

FFAR award amount   $15,000,000

Total award amount   $45,000,000

Location   Urbana-Champaign, IL

Matching Funders   Bill & Melinda Gates Foundation, the U.K. Department for International Development (DFID), University of Illinois

Grantee Institution   University of Illinois

Crops are inefficiently at photosynthesis, the process plants use to convert sunlight into energy. Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun’s energy into food to sustainably increase worldwide food productivity.

Plant-Nanoparticle Hybrids: Optimize Crop Engineering and Nutrient Delivery 

Year Awarded  2017

FFAR award amount   $300,000

Total award amount   $600,000

Location   Berkeley, CA

Matching Funders   The Regents of the University of California

Grantee Institution   University of California Berkely

Genome editing has revolutionized our ability to modify living systems and meet the growing demand for food. However, genetic engineering of mature plants remains a challenge. The Regents of the University of California, Berkeley are optimizing crop engineering and nutrient delivery tools to produce sustainable and high-yielding crops.

Mitigation of Wheat Streak Mosaic Virus in Kansas and U.S. High Plains 

Year Awarded  2017

FFAR award amount   $50,000

Total award amount   $120,623

Location   Manhattan, KS

Program   Rapid Outcomes from Agricultural Research

Matching Funders   KS Wheat Commission

Grantee Institution   Kansas Wheat Commission Research Foundation

Although management methods for wheat streak mosaic (WSMV) are known, wheat farmers continue to experience yield and profit losses as a result of WSMV. Kansas State University researchers updating best management practices for wheat farmers threatened by the pathogen and identifying optimal disease resistant wheat varieties.

Developing Massively Parallel Sequence for Agricultural Surveillance 

Year Awarded  2017

FFAR award amount   $169,960

Total award amount   $339,969

Location   Starkville, MS

Matching Funders   Mississippi State University

Grantee Institution   Mississippi State University

Global commerce has increased the introduction of exotic plant pathogens and pests to new areas. Farmers need a reliable system to detect newly introduced pests and pathogens. Mississippi State University researchers are combining existing technologies with novel data analysis to detect diverse plant pathogens and insects of importance in row crop, orchard and forestry settings, which will help protect agricultural systems.

Crops in Silico 1.0 

Year Awarded  2017

FFAR award amount   $273,138

Total award amount   $601,126

Location   Urbana-Champaign, IL

Matching Funders   The Institute for Sustainability, Energy and Environment at the University of Illinois, NCSA

Grantee Institution   University of Illinois

Environments are changing faster than traditional crop breeding can develop new plant varieties. University of Illinois researchers are developing virtual plant models with the potential to address gaps between food supply and demand in the face of a changing climate. When fully realized, these models will give crop researchers a tool to examine the effects of environmental challenges on a molecular, cellular and organic level within a plant to accurately determine the best targets for genetic engineering.

A Novel Bioassay for Culturing and Characterizing Fastidious Phytopathogens 

Year Awarded  2017

FFAR award amount   $299,993

Total award amount   $599,986

Location   College Station, TX

Matching Funders   Southern Garden Citrus

Grantee Institution   Texas A&M AgriLife Research & Extension Center

Fastidious pathogens, bacteria that only grow in specific conditions, cause huge agricultural losses and cost farmers billions of dollars annually. Candidatus Liberibacter spp. are fastidious pathogens that cause the potato zebra chip and Citrus greening diseases. Complicating matters, these pathogens are will not grow in laboratory conditions, making it difficult to understand them. To support citrus growers and help other producers manage diseases, Texas A&M AgriLife Research & Extension Center researchers are testing a method of screening for disease resistance genes and chemicals that can combat the pathogens causing citrus greening and potato zebra chip diseases. The research will be translated into disease management strategies that help growers and prevent billions of dollars in annual losses.