New Innovator in Food & Agriculture Research Award

Program Contact

Lucyna Kurtyka, M.S.

Application period is now open. Visit here for RFA and frequently asked questions.

About the New Innovator in Food & Agriculture Research Award

The New Innovator in Food & Agriculture Research Award provides early-career scientists the investment needed to propel them into successful research careers.

Young faculty in the sciences often struggle to secure grant funding. We established the New Innovator Awards to launch the careers of promising scientists whose research addresses significant food and agriculture challenges. These awards allow the grantees to focus exclusively on research without the pressure of securing additional funding.


We grant New Innovator Awards to faculty members in the first three years of their scientific career and are within eight years of receiving their Ph.D. Eligible candidates must also conduct research that aligns with our Challenge Areas.

Individuals with significant research experience prior to obtaining their faculty position are not eligible for this award.

Funding Amounts & Requirements

Each applicant can receive up to $150,000 per year for a maximum of three years totaling $450,000 investment from us.

To further support the grantees and allow them to fully focus on their research, matching funds are not required for this program.

Advancing UN Sustainable Development Goals

New Innovator in Food & Agriculture Research Award supports the UN Sustainable Development Goals (SDG), 17 global goals to enhance peace and prosperity, eradicate poverty and protect the environment. Specifically, this research bolsters the following SDGs:

Meet Our New Innovators

Year: 2020

  • Soil Health

Soil-borne diseases pose a significant threat to global food production, causing catastrophic yield and economic losses. Dundore-Arias’ research is determining the ecological and molecular mechanisms responsible for inducing and maintaining disease-suppressive soils. Dundore-Arias is using this information to develop microbial communities capable of enhancing soil health and plant productivity.

  • Advanced Animal Systems

Oysters are a particularly sustainable source of animal protein, but the process of breeding oysters for desirable traits is still in its infancy. Hollenbeck’s research is enhancing selective breeding of oysters by developing new tools and strategies to address barriers to genomics-based breeding. Results of the research will help increase productivity and sustainability to benefit the oyster aquaculture industry in the US and around the world.

  • Health-Agriculture Nexus

Late-season bunch rots are fruit diseases that occur during maturation, after season-long expenses and labor, and directly affect yield and quality. Hu’s research is advancing knowledge about late-season bunch rots by studying the prevalence and ability of the pathogen to cause disease, the conditions and time in the growing cycle favorable to the pathogen and the pathogen’s reactions to fungicide. The research is developing sustainable management strategies that promote targeted and less frequent application of fungicide.

  • Urban Food Systems

Urban agriculture offers many benefits for food production but often has higher production costs relative to traditional farming and is limited to only a few crops. Jinkerson’s research is engineering the size and nutritional value of a tomato plant variety to increase both the diversity and value of crops that are grown in vertical controlled environment agriculture, making urban agriculture more profitable.

  • Next Generation Crops

Plants face a wide variety of threats from pests and pathogens, yet for many such threats there is no simple genetic source of full resistance in the plant immune system. Mason’s research is determining the genetic control of induced chemical defenses, by which plants produce chemical compounds to protect themselves upon detecting pests or pathogens. Mason is also identifying sources of enhanced forms of this protection in a variety of species to reduce reliance on pesticides.

  • Soil Health

Soil compaction diminishes soil health and damages soil ecosystems, leading to lower crop yield and decreased resilience in the face of climate change. Neely’s research is mitigating soil compaction by measuring and mapping compaction with a newly developed visible and near-infrared spectroscopy tool. Neely is linking these measurements to soil ecosystem components and using these findings to improve growers’ knowledge of soil compaction mitigation strategies.

  • Health-Agriculture Nexus

Vitamin A deficiency is one of the most prevalent nutritional disorders worldwide and is the leading cause of preventable blindness in children under the age of five. Rhodes’ research is integrating plant breeding, cereal chemistry and nutrition to develop sorghum grain with high concentrations of carotenoid, plant chemicals that help combat vitamin A deficiency. This approach could be used as a model for biofortification efforts in a broad range of nutrients and crops.

  • Advanced Animal Systems

Bovine respiratory disease causes annual losses of almost $1 billion dollars to the beef cattle industry. Verma’s research is producing a rapid biosensor diagnostic test that detects viruses that cause bovine respiratory disease. This test will guide veterinarians and cattle producers to the best methods for prevention and treatment of the disease.

Year: 2019

Jared Ali, Ph.D.

Pennsylvania State University

  • Next Generation Crops

Pests and pathogens destroy food crops, causing significant losses to farmers and threatening food security. The Pennsylvania State University research team is discovering mechanisms and management practices that manage interactions between cover crops, soil dynamics and beneficial organisms to increase crop resistance to pests and pathogens.

Jessica Copperstone, Ph.D.

Ohio State University

  • Next Generation Crops

Diet is the leading cause of many chronic diseases and improving diet can reduce the incidence of disease. Dr. Jessica Copperstone is combining plant breeding and genetics, analytical chemistry, bioinformatics and nutrition to develop tomatoes that are more beneficial for human health.

Paul Dyce, Ph.D.

Auburn University

  • Advanced Animal Systems

Cattle infertility causes significant loss for cattle producers. Dr. Paul Dyce is improving the efficiency of cattle production by identifying molecular markers that indicate reproductive potential. These markers can uncover the underlying causes of unexplained infertility, leading to potential therapeutic options. This research ultimately helps producers select cattle with the best reproductive capabilities.

Andres Espindola Camacho, Ph.D.

Oklahoma State University

  • Next Generation Crops

Plant pathogens can harm plants, reduce water quality and cause soil erosion. Dr. Andres Espindola Camacho uses cutting-edge, high-throughput sequencing to explain what affects plant health. Specially, this research sequences a plant’s microbiome, a collection of bacteria, viruses and fungi that live on a plant, to determine how these organisms positively or negatively impact the plant.

Landon Marston, Ph.D.

Kansas State University

  • Sustainable Water Management

Agriculture accounts for about 38 percent of the nation’s freshwater withdrawals. Excessive water use results in over irrigation which can damage crops and soil. Dr. Landon Marston’s research investigates complex human-water systems to providing solutions for sustainable water resources management. His work explores how water is used throughout the food production enterprise to reduce water use within the global food system.

Nathan Mueller, Ph.D.

Colorado State University

  • Sustainable Water Management

Crops with high water demands and overuse of water supplies, lead to water scarcity. Dr. Nathan Mueller is investigating the reliance of irrigated crop production on snowmelt water resources globally. The project heightens our understanding of snowmelt-dependent agriculture hotspots and how trends in water supplies and crop water demands influence water scarcity.

Neha Potnis, Ph.D.

Auburn University

  • Next Generation Crops

Traditional disease management strategies often fail to prevent recurring outbreaks. Dr. Neha Potnis’s research is testing a two-pronged approach to transform disease management strategies and identify control approaches that are practical and profitable.

Susan Whitehead, Ph.D.

Virginia Tech

  • Next Generation Crops

Dr. Whitehead’s research is developing new ecologically based management practices for apples that can boost the content of health-promoting phytochemicals in fruit. If successful, these technologies could be applied to a variety of crops to improve the quality of food and boost the nutritional benefits of fruits and vegetables.

Year: 2018

Amanda Ashworth, Ph.D.

United State Department of Agriculture, Agriculture Research Service

  • Soil Health

Tribal Nations limited access to conservation programs available to other US producers. These communities also have the highest incidence of diet-related diseases. Dr. Ashworth is providing soil information to improve agricultural productivity on Tribal Lands. This project leverages an innovative digital soil mapping process to provide first-ever soil maps and interpretations on Native lands to promote water and nutrient-smart agriculture.

Arianne Cease, Ph.D.

Arizona State University

  • Next Generation Crops

Locusts devastate agriculture globally, especially in subsistence farming communities. Locust outbreaks are unpredictable; however, sustainable land use can keep locusts at bay. Dr. Arianne Cease explores connections between land-use practices and locust outbreaks, while identifying and addressing barriers to sustainable locust management.

Tu-Anh Huynh, Ph.D.

University of Wisconsin-Madison

  • Advanced Animal Systems

Listeria monocytogenes is a harmful pathogen that can cause severe illness. Dr. Tu-Anh Huynh is examining the interactions of L. monocytogenes with cattle gastrointestinal tract microbiota. Although clinical listeriosis is rare, L. monocytogenes is frequently shed by dairy cattle, reflecting a high prevalence of infection.

Lav R. Khot, Ph.D.

Washington State University

  • Health-Agriculture Nexus

Timely insect pest management is critical for quality tree fruit and wine grape production. However, consumers are increasingly alarmed by synthetic pesticide, which leave residues on produce and contaminate the environment. Dr. Lav Khot is evaluating alternative pest management technologies that aid conventional and organic growers in reducing their reliance on broad spectrum pesticides.

Manuel Kleiner, Ph.D.

North Carolina State University

  • Health-Agriculture Nexus

Diet effects gut microbiota, which can provide beneficial or detrimental effects in human and animal health. Dr. Manuel Kleiner is linking dietary components to the microbes in intestinal tracts of humans and animals to design diets that foster health-promoting microbes and deprive disease-causing microbes of their food source.

Amit Morey, Ph.D.

Auburn University

  • Urban Food Systems

Global food loss and waste is a growing threat to food security. Dr. Amit Morey is reducing food waste in the food supply chain by developing “Functional Ice” for storage and transportation of raw poultry and seafood.

Yiping Qi, Ph.D.

University of Maryland-College Park

  • Next Generation Crops

Plant genome editing can increase agricultural productivity and help agriculture adapt to climate change. Dr. Yiping Qi is developing CRISPR-Cas12a based plant genome editing systems with broadened targeting range and improved editing activity and specificity. If successful, these tools could accelerate plant breeding for generating high-productivity crops with stress resistance to climate change.

Jason Wallace, Ph.D.

University of Georgia

  • Next Generation Crops

Agricultural production is not advancing fast enough to meet projected demands for food. Agricultural innovations and beneficial microorganisms, can increase crop growth, boost stress resistance and prevent diseases. Scientists and farmers must first understand how microorganisms work. Dr. Jason Wallace is studying how crops are affected by the microbes that live inside them and how the environment impacts this relationship.

Matt Yost, Ph.D.

Utah State University

  • Sustainable Water Management

Concerns about water scarcity are mounting due to rapid urban growth, depleting groundwater supplies and water shortages from climate trends. Dr. Matt Yost assesses the combined effectiveness of several methods of water optimization in agriculture, including more efficient water application and management and advanced crop genetics.

Year: 2017

Sotirios Archontoulis, Ph.D.

Iowa State University

  • Soil Health

Inefficient water use causes about 70 percent of Midwest crop losses. Crop models optimize water use; however, today’s models do not account for groundwater. This important source of water reduces the need for irrigation in dry years and enhances nitrogen and yield loss in wet years. Dr. Sotirios Archontoulis is developing models that predict impacts and designing mitigation strategies that improve water quality, soil health and productivity.

Steve Culman, Ph.D.

The Ohio State University

  • Soil Health

Standard soil testing can assess fertility in some fields but may fail in others. Soil organic matter, a pivotal component of a healthy and functioning soil, is often neglected in fertility recommendations. Dr. Steve Culman is investigating three promising tests of soil active organic matter to provide insight into nutrient cycling and nutrient supply to crops. This project will alleviate obstacles that limit widespread soil health testing.

Hannah Holscher, Ph.D.

University of Illinois

  • Health-Agriculture Nexus

The microbiome in human guts and diets, are linked to diet-related diseases. Yet, researchers lack knowledge on how specific foods effect microbiome and how diet and the microbiome are related to disease treatment and prevention. Dr. Hannah Holscher is researching how foods impacts health. The project will help consumers to make healthful food choices.

Jonas King, Ph.D.

Mississippi State University

  • Next Generation Crops

Global commerce has introduced exotic plant pathogens and pests to new areas. Farmers need a reliable system to detect newly introduced pests and pathogens. Dr. Jonas King is combining existing technologies with novel data analysis to detect diverse plant pathogens and insects of importance in row crop, orchard and forestry settings. This research will ultimately protect agricultural systems.

Markita Landry, Ph.D.

University of California, Berkeley

  • Next Generation Crops

Genome editing revolutionizes our ability to modify living systems and meet the growing demand for food. However, genetic engineering of mature plants remains a challenge. Dr. Markita Landry is optimizing crop engineering and nutrient delivery tools to produce sustainable and high-yielding crops.

Kranthi Mandadi, Ph.D.

Texas A&M University

  • Next Generation Crops

Candidatus Liberibacter spp. is a fastidious pathogen, bacteria that only grow in specific conditions, that causes the potato zebra chip and citrus greening diseases. These pathogens do not grow in a laboratory, making them difficult to study. Dr. Kranthi Mandadi is testing a screening method for disease resistance genes and chemicals to combat the pathogens causing these diseases. The research will translate into disease management strategies that prevent crop and economic losses.

Diwakar Shukla Ph.D.

University of Illinois

  • Next Generation Crops

Agriculture relies on fertilizer to maximize crop yield. However, up to 70 percent of applied nitrogen in fertilizer is not absorbed by plants, causing extensive air and water pollution. Researchers have limited information about the nitrogen process in plants at the molecular level. Dr. Diwakar Shukla is developing new approaches to understand the plant nitrogen uptake process and prevent pollution.

Maya Vadiveloo, Ph.D.

University of Rhode Island

  • Health-Agriculture Nexus

New approaches are necessary to prevent diet-related illnesses such as heart disease and diabetes. Dr. Maya Vadiveloo analyzes whether individually targeted incentives increase the adoption of healthier food patterns to cost-effectively improve health. This research uses an individual’s past food choices to inform the targeted food incentives, which ultimately improves food quality purchases.

Year: 2016

Geoffrey Fisher, Ph.D.

Cornell University

  • Health-Agriculture Nexus

When consumers make food choices, they choose between nutritional content and more immediate attributes, such as taste and convenience. Dr. Geoffrey Fisher promotes healthier food choices by highlighting certain attributes of food selections through laboratory and field experiments.

Amelie Gaudin, Ph.D.

University of California, Davis

  • Soil Health

Soil health management practices increase food production and decrease agriculture’s environmental footprint. However, existing research overlooks the role plants play in using soil health to increase yields. Dr. Amelie Gaudin is transforming soil health into yield by exploring the relationship between root systems, soil health and crop productivity. This research identifies how producers can grow resilient crops using sustainable practices at scale.

Anjali Iyer-Pascuzzi, Ph.D.

Purdue University

  • Next Generation Crops

Plant root diseases can cause lower yields. Some plant varieties are resistant to root disease, but the mechanisms underlying resistance are unclear. Dr. Anjali Iyer-Pascuzzi is examining how roots mediate disease-resistance by using tomato and a soilborne bacterial pathogen as a model.

Mary Jamieson, Ph.D.

Oakland University

  • Next Generation Crops

Urban agriculture is a growing component of food systems. However, few studies focus on factors limiting crop productivity in urban environments and little is known about how insect pollinators and pests affect urban farms. Dr. Mary Jamieson investigates the composition of insect communities, while evaluating strategies for enhancing ecosystem services. This research improves crop pollination, pest control and yields in urban agriculture.

Isaya Kisekka, Ph.D.

Kansas State University

  • Sustainable Water Management

Projected increases in demands for food, feed and fiber will require more water. Semi-arid environments already face challenges in maintaining agricultural productivity under declining water supplies and climate change will exacerbate this challenge. Dr. Isaya Kisekka is improving water productivity in agriculture by integrating data related to agricultural water use by several sources such as soils, weather and plant-based measurements.

Crystal Levesque, Ph.D.

South Dakota State University

  • Advanced Animal Systems

Precision feeding allows pork producers to meet pigs’ nutrient requirements, while minimizing nutrient excretion and environmental risk. Reproductive sows represent an opportunity increase efficiency and reduce environmental costs. Dr. Crystal Levesque is assessing precision feeding formulations for pregnant sows to optimize reproductive performance and reduce environmental impacts.

Benjamin Reading, Ph.D.

North Carolina State University

  • Advanced Animal Systems

To enhance fish production and breeding, North Carolina State University researcher, Dr. Benjamin Reading is using artificial intelligence to determine the genetic factors responsible heterosis, or instances of offspring performing better than their parents, in hybrid striped bass.

Mary Anne Roshni Amalaradjou, Ph.D.

University of Connecticut

  • Health-Agriculture Nexus

The interactions between food and health are complicated and there is limited research on genes and dietary nutrients essential to human health. Dr. Mary Anne Roshni Amalaradjou researchers the effect of dairy foods on gut health. This research is the first in-depth study of the effect of dairy consumption on multiple levels of human physiology.

Lisa Tiemann, Ph.D.

Michigan State University

  • Soil Health

Farmer rotate crop to increase crop productivity, yet there is lack of information on how rotational diversity impacts soil microorganisms. Michigan State University researcher, Dr. Lisa Tiemann studies the interactions between crop diversity, soil microorganisms and soil organic matter. This research helps build soil health through rotational diversity and soil microorganisms.

Want to do more to support our pioneering research?

Subscribe to our newsletter for the latest updates.