Refine Results
Priority Areas
Consortia
Program
Location
Year

Unravelling the genetics of cowpea adaptation to high temperatures for legume improvement 

Year Awarded  2021

FFAR award amount   $490,617

Total award amount   $981,233

Location   Fort Collins, CO

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   Colarado State University

Cowpea is an important crop nutritionally and economically for smallholder farmers in Africa and other regions. It is also one of the legumes most tolerant to high temperatures, making it key to understanding the genetics of adaptation to heat stress. Still, relatively high night temperatures significantly reduce grain yields. This research is examining bioclimatic data—the relationship between climate and biological matter—and genetic information from cowpea varieties to search for gene variants associated with increased temperature tolerance.

Leveraging landrace genomics to rapidly engineer thermotolerant cassava 

Year Awarded  2021

FFAR award amount   $499,999

Total award amount   $999,999

Location   Davis, CA

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   University of California Davis

While scientists now wield breakthrough technologies to edit crop genomes to enable climate resiliency, there is still a gap in knowledge of which genes must be edited. This research is leveraging the valuable but largely untapped reservoir of information stored in the genomes of crop landraces—traditional varieties adapted to diverse environments. Combining newly developed genomic analysis and climate modelling approaches, researchers are identifying gene variants predicted to be adaptive to future climates, with an emphasis on temperature extremes, and using genetic engineering techniques to generate cassava varieties to accelerate breeding.

Genetic incorporation of physiological mechanisms of high night temperature tolerance into rice improvement programs 

Year Awarded  2021

FFAR award amount   $384,369

Total award amount   $768,738

Location   College Station, TX

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   Texas A&M AgriLife

Rice, a major global food crop, is susceptible to heat stress losses in yield. Nighttime heat stress affects processes throughout the rice plant, including photosynthesis, respiration, nutrient transfer and reproduction. This research is enhancing two targeted rice genes that can provide increased tolerance when under heat stress. The first gene alters specific plant hormone responses, and the second gene enhances nutrient transfer. The project will also distribute low-cost methods for screening rice and other crops for heat stress responses based on physiological traits, aiding breeding programs in low-income countries.

Advancing methods for accelerated heat tolerance selection in peanut 

Year Awarded  2021

FFAR award amount   $274,754

Total award amount   $549,507

Location   Athens, GA

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   University of Georgia

Peanut is a high-protein food crop grown mostly in tropical and subtropical regions, and it is directly threatened by increasing global temperature. This research is studying multiple peanut genotypes and varieties to identify genes, molecular mechanisms and photosynthetic processes related to heat stress and tolerance. The researchers are developing an automated model, the Peanut-ThermoTool, to indicate heat tolerance in peanut and rank genotypes for heat tolerance, predicting their capabilities to function during and recover after a period of heat stress. The genotypes possessing heat-tolerance traits will be available in the germplasm collection, serving as genetic resources for heat tolerance in breeding programs.

Exploiting conserved gene regulation mechanisms for genome-wide breeding for heat & broad-spectrum disease tolerance in rice 

Year Awarded  2021

FFAR award amount   $470,459

Total award amount   $940,917

Location   Fort Collins, CO

Program   Increasing Climate Resilience in Crops

Matching Funders   Bill & Melinda Gates Foundation

Grantee Institution   Colarado State University

Developing heat and disease resistant crop varieties takes a long time, particularly because these traits are complex and controlled by multiple genes. In addition, reliable genetic markers identifying relevant traits are not readily available, making breeding more challenging. This research is developing a strategy to generate reliable markers of stress-response DNA sequences to efficiently activate genes involved in heat tolerance and disease defenses in rice. The genetic markers could be applied in any crop breeding program, whether in low- or high-income countries.

International Efforts Combat Crop-Destroying Weeds 

Improving Antibiotic Stewardship in Pigs and Beef Cattle: Call for Letters of Intent 

FFAR Awards Cornell University a Grant to Treat Udder Infection in Dairy Cattle 

Year Awarded  2021

FFAR award amount   $642,202

Total award amount   $14,000,000

Location   Ithaca, NY

Program   Seeding Solutions

Matching Funders   New York Farm Viability Institute, Elanco

Grantee Institution   Cornell University

Mastitis, a common and costly udder infection in dairy cattle is a major economic problem for dairy farmers. Cornell University researchers are exploring compounds secreted by stem cells as a potential therapy for mastitis.

FFAR Awards Grant to Treat Udder Infection in Dairy Cattle 

Sustainable Production of High-Performance Feed Supplements 

Year Awarded  2021

FFAR award amount   $653,035

Total award amount   $1,410,000

Location   St. Paul, MN

Program   Seeding Solutions

Matching Funders   Launch Minnesota, Minnesota Department of Employment and Economic Development, private equity financing and Sasya, Inc.

Grantee Institution   University of Minnesota

As consumer demand for animal protein increases, meat producers are under tremendous pressure to increase productivity, while maintaining profitability. As a result, many producers rely on feed supplements to encourage faster growth, reduce disease and improve feed efficiency. This Seeding Solutions grant awarded to Sasya, Inc. supports the development of sustainable, cost-effective, multi-species feed supplements that are safe for livestock, the environment and human consumption.