• Missing link in algal photosynthesis found, offers opportunity to improve crop yields

    BATON ROUGE, La (August 6, 2019) —  Photosynthesis is the natural process plants and algae utilize to capture sunlight and fix carbon dioxide into energy-rich sugars that fuel growth, development, and in the case of crops, yield. Algae evolved specialized carbon dioxide concentrating mechanisms (CCM) to photosynthesize much more efficiently than plants. This week, in the journal Proceedings of the National Academy of Sciences, a team from Louisiana State University (LSU) and the University of York discovered a previously unexplained step in the CCM of green algae—which is key to developing a functional CCM in food crops to boost productivity. “Most crops are plagued by photorespiration, which occurs when Rubisco—the enzyme that drives photosynthesis—cannot differentiate between life-sustaining carbon dioxide and oxygen molecules that waste large amounts of the plant’s energy,” said James Moroney, the Streva Alumni Professor at LSU and member of Realizing Increased Photosynthetic Efficiency (RIPE). “Ultimately, our goal is to engineer a CCM in crops to surround Rubisco with more carbon dioxide, making it more efficient and less likely to grab oxygen molecules. Led by the University of Illinois, RIPE is an international research project that is engineering crops to be more productive by improving photosynthesis with support from the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research (FFAR), and the U.K. Government’s Department for International Development (DFID). Whereas carbon dioxide diffuses across cell membranes relatively easily, bicarbonate (HCO3-) diffuses about 50,000 times slower due to its negative charge. The green algae Chlamydomonas reinhardtii, nicknamed Chlamy, transports bicarbonate across three cellular membranes into the compartment that houses Rubisco, called a pyrenoid, where the bicarbonate is converted back into carbon dioxide and fixed into sugar. “Before now, we did not understand how bicarbonate crossed the third threshold to enter the pyrenoid,” said Ananya Mukherjee, who led this work as a graduate student at LSU before joining the University of Nebraska–Lincoln as a postdoctoral researcher. “For years, we tried to find the missing component, but it turns out there are three transport proteins involved in this step—which were the missing link in our understanding of the CCM of Chlamydomonas reinhardtii.” “While other transport proteins are known, we speculate that these could be shared with crops more easily because Chlamy is more closely related to plants than other photosynthetic algae, such as cyanobacteria or diatoms,” said Luke Mackinder, a lecturer at York who collaborated with the RIPE team on this work with support from the Biotechnology and Biological Sciences Research Council (BBSRC) and the Leverhulme Trust. Creating a functional CCM in crops requires three things: a compartment to store Rubisco, transporters to bring bicarbonate to the compartment, and specialized enzymes to turn bicarbonate into carbon dioxide. In a 2018 study, RIPE colleagues at The Australian National University demonstrated that they could add a compartment called a carboxysome, similar to a pyrenoid, in crops. This study completes the list of possible transport proteins that could shuttle bicarbonate from outside the cell to this carboxysome structure in crops’ leaf cells. “Our research suggests that creating a functional CCM in crops could help crops conserve more water and could significantly reduce the energy-taxing process of photorespiration in crops—that worsens as temperatures rise,” Moroney said. “The development of climate-resilient crops that can photosynthesize more efficiently will be vital to protecting our food security.” ### Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun’s energy into food to sustainably increase worldwide food production, with support from the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research, and the U.K. Government’s Department for International Development. RIPE is led by the University of Illinois in partnership with The Australian National University, Chinese Academy of Sciences, Commonwealth Scientific and Industrial Research Organisation, Lancaster University, Louisiana State University, University of California, Berkeley, University of Essex, and U.S. Department of Agriculture, Agricultural Research Service.  Editor’s Notes: A one-minute video about this work as well as photos and captions are available online. “Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii” is published by the journal Proceedings of the National Academy of Sciences and available online or by request. CONTACT: Colleen Klemczewski, 202-204-2605, cklemczewski@foundationfar.org


    Continue reading
  • FFAR Grant to USDA-ARS Bolsters Soybean Resiliency to Climate Change

     WASHINGTON, DC (July 22, 2019) — In recognition of the crucial role soybeans play in U.S. agriculture, the Foundation for Food and Agriculture Research (FFAR) awarded a $942,000 Seeding Solutions Grant to the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), alongside scientific partners North Carolina State University and VIB (Institute for Biotechnology in Flanders, Belgium), to improve soybean crop resiliency. The FFAR grant has been matched with funding from Benson Hill Biosystems, BASF, and VIB for a total $1.89 million award. Soybean is a complete source of protein that contains all the essential amino acid for human nutrition. Soy meal demand is projected to grow as protein demand increases worldwide. This surge in demand is happening concurrently with global climate shifts and more frequent extreme weather, including cold snaps and heat waves. Extreme weather is devastating to soybean crop yields and nutritional content, making it imperative that researchers determine how to increase soybean resiliency in response to climate change. “Our research demonstrates that the response of soybean protein content to temperature varies among different genetic varieties,” said Dr. Anna Locke (USDA-ARS), the principal investigator of this project. “Using deep learning techniques, we can analyze the effects of weather variability on soybean yield and protein production and work to develop high protein varieties that can withstand the stresses associated with changing climates.” Dr. Anna Locke and her team, including co-principal investigators of this project, Dr. Ive De Smet (VIB) and Dr. Ross Sozzani (NCSU), will use advanced machine learning algorithms to leverage the natural genetic diversity of plants and improve the sustainability, nutrition and flavor profiles of crops with greater precision than previously possible. Researchers will evaluate key temperature stress regulators, develop a test to rapidly screen soybean genotypes for temperature tolerance, and ultimately provide data that will allow crop breeders to identify new temperature tolerant soybean varieties more efficiently. “We share FFAR’s vision to foster innovation and collaboration to address complex challenges in food production,” said Matthew Crisp, CEO and co-founder of Benson Hill Biosystems. “By applying data analytics and machine learning, we can gain insight into how to optimize the nutrition and yield of soybean simultaneously for different climatic conditions.” “Soybean is a fundamentally important crop that plays a vital role in a healthy food system,” said Sally Rockey, Ph.D., FFAR’s executive director. “FFAR is excited to support this groundbreaking research that will increase our understanding of the relationship between a soybean plant’s genetic makeup, its environment, and its performance.” FFAR’s Seeding Solutions Grant is an open call for bold ideas that address a pressing food and agriculture issues in one of the Foundation’s Challenge Areas. USDA ARS’s research supports FFAR’s 2018 Protein Challenge Area, currently the Next Generation Crops Area. FFAR’s work in this area supports the advancement of novel, nutritious, profitable, and resilient farm crops. ### About the Foundation for Food and Agriculture Research The Foundation for Food and Agriculture Research, a 501 (c) (3) nonprofit organization established by bipartisan congressional support in the 2014 Farm Bill, builds unique partnerships to support innovative and actionable science addressing today’s food and agriculture challenges. FFAR leverages public and private resources to increase the scientific and technological research, innovation, and partnerships critical to enhancing sustainable production of nutritious food for a growing global population. The FFAR Board of Directors is chaired by Mississippi State University President Mark Keenum and includes ex officio representation from the U.S. Department of Agriculture and National Science Foundation. Connect: @FoundationFAR | @RockTalking CONTACT: Colleen Klemczewski, (202) 204-2605, cklemczewski@foundationfar.org


    Continue reading
  • Scientists stack algorithms to improve predictions of yield-boosting crop traits

    CHAMPAIGN (June 3, 2019) — Hyperspectral data comprises the full light spectrum; this dataset of continuous spectral information has many applications from understanding the health of the Great Barrier Reef to picking out more productive crop cultivars. To help researchers better predict high-yielding crop traits, a team from the University of Illinois have stacked together six high-powered, machine learning algorithms that are used to interpret hyperspectral data—and they demonstrated that this technique improved the predictive power of a recent study by up to 15 percent, compared to using just one algorithm. “We are empowering scientists from many fields, who are not necessarily experts in computational analysis, to translate their enormous datasets into beneficial results,” said first author Peng Fu, a postdoctoral researcher at Illinois, who led this work for a research project called Realizing Increased Photosynthetic Efficiency (RIPE). “Now scientists do not need to scratch their heads to figure out which machine learning algorithms to use; they can apply six or more algorithms—for the price of one—to make more accurate predictions.” RIPE, which is led by Illinois, is engineering crops to be more productive by improving photosynthesis, the natural process all plants use to convert sunlight into energy and yields. RIPE is supported by the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research (FFAR), and the U.K. Government’s Department for International Development (DFID). In a recent study, published in Remote Sensing of Environment, the team introduced spectral analysis as a means to quickly identify photosynthetic improvements that could increase yields. In this new study, published in Frontiers in Plant Science, the team improved their previous predictions of photosynthetic capacity by as much as 15 percent using machine learning, where computers automatically applied these six algorithms to their dataset without human help. “I’ve loved seeing what’s possible when you can use computational power to exploit the data for all its worth,” said co-author Katherine Meacham-Hensold, a RIPE postdoctoral researcher at Illinois, who led the previous study in Remote Sensing of Environment. “It’s exciting to see what a data analyst like Peng can do with my data. Now other non-data-analyst scientists can test several powerful algorithms to figure out which one will help them leverage their data to the fullest extent.” However, more studies are needed to prove the relevance of this stacked algorithm technique to the plant science community and other fields of study. “By applying the expertise of data analysts to address the needs of plant physiologists like myself, we ended up refining a technique that is relevant to other hyperspectral datasets,” said co-author Carl Bernacchi, a RIPE research leader and scientist with the U.S. Department of Agriculture, Agricultural Research Service, who is based at Illinois’ Carl R. Woese Institute for Genomic Biology. “The next step is to test more stacked machine learning algorithms on datasets from many more crop species and explore the utility of this technique to estimate other parameters, such as abiotic stresses from drought or disease.” “As scientists, we should try to use our domain knowledge to explain advanced performance from machine learning methods,” said co-author Kaiyu Guan, an assistant professor in Illinois’ College of Agriculture, Consumer, and Environmental Sciences (ACES). “Combining computational methods and domain disciplines allows us to possibly unravel what causes the measurable differences in hyperspectral datasets—which is an unsolved mystery in our work and worth future exploration.” ### Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun’s energy into food to sustainably increase worldwide food productivity, with support from the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research, and the U.K. Government’s Department for International Development. RIPE is led by the University of Illinois in partnership with The Australian National University, Chinese Academy of Sciences, Commonwealth Scientific and Industrial Research Organisation, Lancaster University, Louisiana State University, University of California, Berkeley, University of Essex, and U.S. Department of Agriculture, Agricultural Research Service.Editor’s Notes: A one-minute video about this work as well as photos and captions are available online. The paper “Hyperspectral leaf reflectance as proxy for photosynthetic capacities: an ensemble approach based on multiple machine learning algorithms” published by the journal Frontiers in Plant Science is available online (DOI: 10.3389/fpls.2019.00730) or by request. Media Contact: Claire Benjamin RIPE Communications Coordinator claire@illinois.edu +1-217-244-0941


    Continue reading
  • Study reports breakthrough in measuring plant improvements to boost food production

    CHAMPAIGN (May 16, 2019) — An international team is using advanced tools to develop crops that give farmers more options for sustainably…


    Continue reading
  • Crop Modeling Project Awarded $5M

    URBANA and WASHINGTON — The University of Illinois’ Crops in silico (Cis) project received a $5 million grant from the Foundation for Food and Agriculture Research (FFAR) to continue building a computational platform that integrates multiple models to study a whole plant virtually. “Four crops – corn, soybean, sorghum, and wheat – account directly or indirectly for about 60 percent of human calories. Yet they are susceptible to declining yields due to the impending stresses of climate change, including water shortages, elevated carbon dioxide levels, and soil degradation,” said Amy Marshall-Colón, U of I Assistant Professor of Plant Biology and the Principal Investigator for the new four-year grant. With the global population increasing and the climate continuing to change, understanding how crops respond and may be adapted to environmental changes is needed to address current and future food insecurity. Developing crops using traditional methods is research, labor and cost intensive. However, Cis allows researchers to quickly determine and test characteristics that help crops thrive in specific environments. This modeling allows researchers to conduct more experiments than can be realistically achieved in a field. With Cis, billions of possible changes and combinations of changes can be tested to achieve more productive and sustainable crops in different environments. Researchers have extensive knowledge about models depicting individual processes that drive plant growth and development, and how plants utilize resources. Until now, researchers have yet to combine this knowledge into whole plant models that mimic biology. This project integrates diverse computational models. Using the whole system model, researchers will determine how crops respond to environmental changes at all biological levels, from cellular to ecosystem-level interactions. “FFAR was created to advance innovative science that addresses food and agriculture’s most pressing challenges. This project is a perfect example of using technological advances to identify how crops will respond to environmental stressors and how to help the crops thrive despite environmental changes – all while saving time, money and making this platform publicly available,” said FFAR Executive Director Sally Rockey. “Supplying ample food for a burgeoning population will depend on transformative projects like Crops in silico.” This grant extends the original project, which created a platform to link computational models to simulate plant growth and development. The new funding will allow researchers to quickly and accurately test how a plant responds to a combination of changes. The grant also makes the entire platform available to the public. Co-Investigators on the grant include Illinois’ Matthew Turk, Assistant Professor of Astronomy and Research Scientist at the National Center for Supercomputing Applications (NCSA); Stephen P. Long, Professor of Plant Biology and Crop Sciences; Kaiyu Guan, Assistant Professor of Natural Resources and Environmental Sciences; and Meagan Lang, NCSA Research Scientist. Collaborators from other institutes include Jonathan Lynch, Professor of Plant Science at Pennsylvania State University; Bedrich Benes, Professor of Computer Graphics Technology at Purdue University; Lee Sweetlove, Professor of Plant Sciences at Oxford University; and James Schnable, Assistant Professor of Agronomy and Horticulture at the University of Nebraska. “This approach has already identified opportunities that resulted in successful field trials by optimizing single processes like photosynthesis or single organs like root architecture,” said Steve Long. “By scaling up our work to whole plants and fields, we can move years ahead in optimizing plants for different growing conditions.” The Institute for Sustainability, Energy, and Environment at Illinois provided $350,000 in seed funding to establish the original Crops in silico project in 2015 in collaboration with NCSA, which has provided $212,000 in seed funding, designed the Cis infrastructure and interface, and developed many of the tools used to visualize crops and simulate conditions. Marshall-Colón and Turk received a $274,000 grant from FFAR in 2017 to extend this work. “We are so grateful for the support we have received from FFAR, iSEE, and NCSA,” Marshall-Colón said. ### Foundation for Food and Agriculture Research The Foundation for Food and Agriculture Research (FFAR), a 501 (c) (3) nonprofit organization originally established by bipartisan Congressional support in the 2014 Farm Bill, builds unique partnerships to support innovative and actionable science addressing today's food and agriculture challenges.  FFAR leverages public and private resources to increase the scientific and technological research, innovation, and partnerships critical to enhancing sustainable production of nutritious food for a growing global population. The FFAR Board of Directors is chaired by Mississippi State University President Mark Keenum, Ph.D., and includes ex officio representation from the U.S. Department of Agriculture and National Science Foundation. Connect: @FoundationFAR | @RockTalking Media Contacts: Tony Mancuso, Communications Director, Institute for Sustainability, Energy, and Environment, 217-300-3546, tmancuso@illinois.edu Tiffany Jolley, Strategic Content Specialist, National Center for Supercomputing Applications, 256-225-3879, tjolley2@illinois.edu Sarah Goldberg, FFAR, 202-624-0704, sgoldberg@foundationFAR.org


    Continue reading
  • Scientists engineer shortcut for photosynthetic glitch, boost crop growth by 40 percent

    RIPE Cassava SoyFACE Field TrialsURBANA (January 3, 2019) – Plants convert sunlight into energy through photosynthesis; however, most crops on the planet are plagued by a photosynthetic glitch, and to deal with it, evolved an energy-expensive process called photorespiration that drastically suppresses their yield potential. Today, researchers from the University of Illinois and U.S. Department of Agriculture Agricultural Research Service report in the journal Science that crops engineered with a photorespiratory shortcut are 40 percent more productive in real-world agronomic conditions. “We could feed up to 200 million additional people with the calories lost to photorespiration in the Midwestern U.S. each year,” said principal investigator Donald Ort, the Robert Emerson Professor of Plant Science and Crop Sciences at Illinois’ Carl R. Woese Institute for Genomic Biology. “Reclaiming even a portion of these calories across the world would go a long way to meeting the 21st Century’s rapidly expanding food demands—driven by population growth and more affluent high-calorie diets.” This landmark study is part of Realizing Increased Photosynthetic Efficiency (RIPE), an international research project that is engineering crops to photosynthesize more efficiently to sustainably increase worldwide food productivity with support from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), and the U.K. Government’s Department for International Development (DFID). Photosynthesis uses the enzyme Rubisco—the planet’s most abundant protein—and sunlight energy to turn carbon dioxide and water into sugars that fuel plant growth and yield. Over millennia, Rubisco has become a victim of its own success, creating an oxygen-rich atmosphere. Unable to reliably distinguish between the two molecules, Rubisco grabs oxygen instead of carbon dioxide about 20 percent of the time, resulting in a plant-toxic compound that must be recycled through the process of photorespiration. “Photorespiration is anti-photosynthesis,” said lead author Paul South, a research molecular biologist with the Agricultural Research Service, who works on the RIPE project at Illinois. “It costs the plant precious energy and resources that it could have invested in photosynthesis to produce more growth and yield.” Photorespiration normally takes a complicated route through three compartments in the plant cell. Scientists engineered alternate pathways to reroute the process, drastically shortening the trip and saving enough resources to boost plant growth by 40 percent. This is the first time that an engineered photorespiration fix has been tested in real-world agronomic conditions. “Much like the Panama Canal was a feat of engineering that increased the efficiency of trade, these photorespiratory shortcuts are a feat of plant engineering that prove a unique means to greatly increase the efficiency of photosynthesis,” said RIPE Director Stephen Long, the Ikenberry Endowed University Chair of Crop Sciences and Plant Biology at Illinois. The team engineered three alternate routes to replace the circuitous native pathway. To optimize the new routes, they designed genetic constructs using different sets of promoters and genes, essentially creating a suite of unique roadmaps. They stress tested these roadmaps in 1,700 plants to winnow down the top performers. Over two years of replicated field studies, they found that these engineered plants developed faster, grew taller, and produced about 40 percent more biomass, most of which was found in 50-percent-larger stems. The team tested their hypotheses in tobacco: an ideal model plant for crop research because it is easier to modify and test than food crops, yet unlike alternative plant models, it develops a leaf canopy and can be tested in the field. Now, the team is translating these findings to boost the yield of soybean, cowpea, rice, potato, tomato, and eggplant. “Rubisco has even more trouble picking out carbon dioxide from oxygen as it gets hotter, causing more photorespiration,” said co-author Amanda Cavanagh, an Illinois postdoctoral researcher working on the RIPE project. “Our goal is to build better plants that can take the heat today and in the future, to help equip farmers with the technology they need to feed the world.” While it will likely take more than a decade for this technology to be translated into food crops and achieve regulatory approval, RIPE and its sponsors are committed to ensuring that smallholder farmers, particularly in Sub-Saharan Africa and Southeast Asia, will have royalty-free access to all of the project’s breakthroughs. This image slider demonstrates the difference in size between modified and unmodified plants.###   Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun’s energy into yield to sustainably increase worldwide food productivity, with support from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), and the U.K. Government’s Department for International Development (DFID). RIPE is led by the University of Illinois in partnership with the Australian National University; Chinese Academy of Sciences; Commonwealth Scientific and Industrial Research Organisation; Lancaster University; Louisiana State University; University of California, Berkeley; University of Essex; and the U.S. Department of Agriculture, Agricultural Research Service.   Editor’s notes: More information, including a copy of the paper, can be found online at the Science press package webpage at http://www.eurekalert.org/jrnls/sci. You will need your user ID and password to access this information. Otherwise, contact the Science press team at +1-202-326-6440 or scipak@aaas.org. Pictures related to this work are available online. B-roll and other multimedia are available upon request. Media Contact: Claire Benjamin RIPE Communications Coordinator claire@illinois.edu 217-244-0941


    Continue reading
  • The RIPE project receives additional $13 million to accelerate progress in redesigning photosynthesis

    Bill & Melinda Gates Foundation increases RIPE project investment to complement support from FFAR and DFID to improve yields for farmers worldwideThe Bill & Melinda Gates Foundation announces additional $13 million in support of RIPE, an international research project led by Director Stephen Long (right) and Deputy Director Donald Ort (left) to enhance the photosynthetic productivity and yield of key food crops including rice, cassava, cowpea, and soybeans (pictured) to benefit farmers worldwide.This week, families across the U.S. will gather around Thanksgiving tables in a traditional celebration of the season’s bounty. By improving how key crops transform sunlight into yield, Realizing Increased Photosynthetic Efficiency (RIPE) will one day help farmers put food on more tables worldwide, especially where it is needed most. In 2017, a $45 million, five-year reinvestment from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), and the U.K. Government’s Department for International Development (DFID) ensured the international research project could continue to address the global food challenge. Today, the Gates Foundation contributed an additional $13 million to add resources and personnel that will help accelerate the transfer of the RIPE project’s successes into key food crops: soybeans, rice, cassava, and cowpea. “Time is of the essence—especially as we look to a future filled with more people and a dramatically different climate,” said RIPE Director Stephen Long, Ikenberry Endowed University Chair of Crop Sciences and Plant Biology at the University of Illinois and Distinguished Professor in Crop Sciences at Lancaster University. “We must future-proof our food supply today to ensure that these technologies are available when we need them.” A key aim of the RIPE project is to provide farmers, particularly those in some of the world’s poorest countries, with seed that will yield substantially more without requiring more inputs. However, it takes at least 15 years for any breakthroughs to journey from scientists’ lab benches to farmers’ fields at scale, cautioned RIPE Deputy Director Donald Ort, the Robert Emerson Professor of Plant Biology and Crop Sciences at Illinois. Likely, RIPE’s technologies will not be in farmers’ fields until 2030 when the world’s population will have grown by more than a billion people. To expedite progress, RIPE has modeled photosynthesis to virtually tweak the photosynthetic process and pinpoint the best opportunities for improvements that would increase crop productivity. The supplement’s support will be used to test the model’s predictions in model crops and translate yield-boosting technologies to food crops more quickly. “Our rich knowledge from a half-century of photosynthesis research coupled with modeling has enabled our team to make blueprints to re-engineer this complex process in staple food crops,” Long said, who leads the project at the Carl R. Woese Institute for Genomic Biology. “Our models predict that by combining several strategies we could achieve a 50 percent yield increase, which will go a long way to meeting the demands of this century.” Already, these computer simulations guided promising real-world results, including a 20 percent boost in productivity published in Science, and an even greater increase published in Plant Biotechnology Journal. Several other strategies have shown similar yield improvements through preliminary greenhouse experiments and field trials. Other work has demonstrated in field trials that the up-regulation of a single gene protects soybean yield in futuristic climate conditions with elevated temperatures and carbon dioxide levels, as published in the Journal of Experimental Botany. In Nature Communications, the team showed how to significantly increase crop water-use efficiency. “We are committed to ensuring that the literal fruits of our labor are globally available and royalty-free for smallholder farmers, particularly in Sub-Saharan Africa and Southeast Asia, to help meet the huge challenge of feeding the future,” Long said. “While no single strategy will overcome the hurdles facing the industry—our recent success in RIPE and our sponsors’ continued support give me hope that the future of agriculture is bright.”Realizing Increased Photosynthetic Efficiency (RIPE) is an international research project that is producing staple food crops that more efficiently convert the sun’s energy into food to sustainably increase productivity using fewer inputs. This project is supported by the Bill & Melinda Gates Foundation, Foundation for Food and Agriculture Research, and U.K. Government’s Department for International Development. RIPE is led by the University of Illinois in partnership with the Australian National University; Chinese Academy of Sciences; Commonwealth Scientific and Industrial Research Organisation; Lancaster University; Louisiana State University; University of California, Berkeley; University of Essex; and the U.S. Department of Agriculture, Agricultural Research Service.


    Continue reading
  • RIPE Researchers Use Blue-green Algae to Boost Crop Yields

    New Article in Nature Communications Highlights FFAR-funded Research Project Researchers from the ARC Centre of Excellence in translational…


    Continue reading
  • FFAR Applauds RIPE Research Team for Breakthrough in Crop Engineering that Boosts Crop Yield by Almost 50 Percent

    Patricia Lopez-Calcagno (left) and Kenny Brown (right) evaluate a field trial that helped prove that increasing…


    Continue reading
  • FFAR Awards Emergency Funds to Combat Lettuce Disease in Florida

    University of Florida Researchers to Study Management Practices and Crop Resistance Against Wilting Disease German Sandoya-Miranda (left),…


    Continue reading