Awarded Grants
Below is a listing of our awarded grants that tackle big food and agriculture challenges.

Refine Results
Priority Areas
Consortia
Program
Country
    See more
Location
    See more
Year
    See more
Order

90 Grants found

Hide map

Advanced Harvest Techniques Facilitate Food Safe Soil Health Practices in Almond Orchards

Year Awarded  2018

FFAR award amount   $225,000

Total award amount   $450,000

Location   Davis, CA

Program   Seeding Solutions

Matching Funders   Almond Board of California, Bays Ranch Inc., Muller Berry Farms, Ples Due Family Farms

Grantee Institution   University of California Davis

Almonds typically dry out on the orchard floor before being harvested. This practice prevents growers from using manure or compost that could improve the soil but could also contaminate the almonds. University of California, Davis researchers are testing machinery that harvests almonds, leaving the hulls and shells on the ground to improve soil health.

FFAR Awards $9.4 Million to Spur Next Leap in Agriculture: Improved Soil Health to Optimize Economic and Environmental Results for U.S. Farmers

Year Awarded  2017

FFAR award amount   $9,400,000

Total award amount   $20,000,000

Location   Morrisville, NC

Matching Funders   General Mills, the Jeremy and Hannelore Grantham Environmental Trust, Midwest Row Crop Collaborative, Monsanto (Bayer), Nestlé Purina PetCare Company, The Samuel Roberts Noble Foundation, Walmart Foundation, the Walton Family Foundation and individual donors

Grantee Institution   Soil Health Institute

Soil health is a critical component of a productive and sustainable agricultural system. Farming practices that improve soil health can increase profitability while protecting natural resources like air and water for communities. The goal of this project is to support collaborative research and education that accelerates adoption and benefits of soil health management systems nationally.

Cover Crop Germplasm & Breeding in Support of New Cultivar Development

Year Awarded  2017

FFAR award amount   $2,200,000

Total award amount   $6,600,000

Location   Ardmore, OK

Matching Funders   The Samuel Roberts Noble Foundation, Inc.

Grantee Institution   Noble Research Institute

Cover crops can play a major role mitigating soil erosion and improving soil fertility and water infiltration. The choice of cover crop depends on the intended purpose, specific location, and time of establishment. This project is identifying cover crop species with the greatest potential to improve soil health and evaluate such species over a broad geography. Engaging both producers and industry, researchers are seeking to identify and introduce key traits that can improve crop performance and soil enhancement. Additionally, researchers are using advanced breeding techniques – which have traditionally been limited in application to high-value, row crops – to bring new and value-added characteristics to cover crops.

Adaptive Multi-Paddock (AMP) Grazing Research in the U.S. Southeast

Year Awarded  2017

FFAR award amount   $1,250,000

Total award amount   $2,500,000

Location   Tempe, AZ

Matching Funders   McDonalds

Grantee Institution   Arizona State University

Researchers are investigating whether Adaptive Multi-Paddock (AMP) grazing, in relation to widespread continuous grazing practices, contributes to measurable differences in overall soil health, environmental sustainability and farmer profitability within the U.S. Southeast.

An Open Source Plant Chemogenomics Set

Year Awarded  2017

FFAR award amount   $1,000,000

Total award amount   $2,320,000

Location   Davis, CA

Matching Funders   UC Davis Innovation Institute for Food and Health, the Structural Genomics Consortium, AgBiome and Promega

Grantee Institution   University of California Davis

Drought is a significant concern for farmers, especially rice growers. University of California, Davis researchers are studying genes responsible for drought tolerance in rice. The project is developing and implementing a screening strategy to identify new gene that effect root traits and drought tolerance in rice.

Improving Simulations of Water Dynamics and Crop Yield in the Corn Belt

Year Awarded  2017

FFAR award amount   $300,000

Total award amount   $600,000

Location   Ames, IA

Matching Funders   Iowa Crop Improvement Association

Grantee Institution   Iowa State University

Currently, about 70 percent of crop yield losses in the Midwest are related to inefficient water use. Crop models help optimize water use and quality; however, today’s models do not account for groundwater. This important source of water can reduce the need for irrigation in dry years and enhance nitrogen and yield loss in wet years. Iowa State University researchers are improving simulation models that help farmers manage water use and predict impacts and design mitigation strategies that improve water quality, soil health and productivity.

Using Active Organic Matter Tests to Help Predict Crop Nutrient Needs

Year Awarded  2017

FFAR award amount   $221,541

Total award amount   $443,082

Location   Columbus, OH

Matching Funders   Ohio State University

Grantee Institution   Ohio State University

Standard soil testing can assess fertility in some fields but may fail in others. Soil organic matter, which provides a pivotal component of a healthy and functioning soil, is often neglected in fertility recommendations. Ohio State University researchers are bridging this gap by investigating three promising tests of soil active organic matter to provide insight into nutrient cycling and nutrient supply to crops. The project aims to alleviate some key obstacles that limit widespread soil health testing by farmers.

Building Soil Health Through Rotational Diversity and Soil Microorganisms

Year Awarded  2016

FFAR award amount   $299,962

Total award amount   $599,923

Location   East Lansing, MI

Matching Funders   MSU AgBioRes

Grantee Institution   Michigan State University

Crop rotations have been used to increase crop productivity for centuries, but little is known about how rotational diversity impacts soil microorganisms. Michigan State University researchers are addressing this research gap by studying the interactions between crop diversity, soil microorganisms and soil organic matter. The project aims to build soil health through rotational diversity and soil microorganisms.

Going Back to the Roots To Transform Soil Health into Yield

Year Awarded  2016

FFAR award amount   $285,083

Total award amount   $570,165

Location   Davis, CA

Matching Funders   UC Davis Dean's Office

Grantee Institution   University of California Davis

Soil health management practices are promoted as feasible, complementary approaches to high-input strategies to increase food production and decrease agriculture’s environmental footprint. However, the role crop plants play in using soil health to increase yields is often overlooked. University of California, Davis researchers are transforming soil health into yield by exploring the relationship between root systems, soil health and crop productivity to identify how producers can grow resilient crops using sustainable practices at scale.

Advances in Water Limited Irrigation Management

Year Awarded  2016

FFAR award amount   $300,000

Total award amount   $600,000

Location   Davis, CA

Matching Funders   Kansas State University and University of California, Davis

Grantee Institution   University of California Davis

Projected increases in demands for food, feed and fiber will require more water. Semi-arid environments already face challenges in maintaining agricultural productivity under declining water supplies and climate change will exacerbate this challenge. University of California, Davis researchers are improving water productivity in agriculture by integrating data related to agricultural water use by several sources such as soils, weather and plant-based measurements.