FFAR
We Fund Pioneering Research
We Invest in the Scientific Workforce
Search
Challenge Area
Consortia
Program
Scientific Workforce Programs
Location
Year
Order
Hide map
Year Awarded 2020
FFAR award amount $16,000
Total award amount $16,000
Location University of Wisconsin
The intestinal pathogen Salmonella enterica causes disease in many animal species, including humans, but it is unclear how the gut environment primes Salmonella for transmission. The gut microbiota of mammals produces a diversity of sulfur-containing metabolites, some of which enhance Salmonella infection, survival or severity. Cruz is assessing the effect of these sulfur metabolites on Salmonella gut colonization and environmental survival to provide key targets for anti-Salmonella strategies based on sulfur metabolites.
Location University of Illinois at Urbana-Champaign
Researchers hypothesize that the influenza A viruses (IAV), also known as the flu, can be transmitted between species, including between humans and pigs. Kinkade is examining the transmission of influenza A subtype H3N2 virus, a strain of the flu, between humans and pigs from 2014 to 2019. These genetic-analysis tools can determine which strains of the virus are spreading between species and if this transmission is occurring in any specific pattern, information necessary to better monitor the movement and evolution of the influenza virus.
Location Mississippi State University
Not only are zoonotic diseases a significant threat to humans, but in some cases these microorganisms can also be resistant to antimicrobials. Alternative treatments for antimicrobial-resistant zoonotic microorganisms are needed to protect human and animal health. Increased expression of naturally occurring antimicrobial proteins (AMP) by an animal’s cells could be a novel strategy for treating some infections. Barber is using bovine coronavirus and Pasteurella bacteria as models for viral and bacterial zoonotic pathogens to investigate whether AMPs may be effective in combating infectious agents in humans and animals.
Location University of Tennessee
Bovine anaplasmosis, an infectious blood disease in cattle usually spread by ticks, causes severe anemia and significant economic losses for producers; however, no recent prevalence estimates exist, making it impossible to account for exact production losses. Andrews is tracking the prevalence of bovine anaplasmosis in Tennessee beef cattle herds, which helps producers understand the economic impacts of the disease and adopt better preventative and control measures.
As policies and regulations on antimicrobial use become more restrictive, the cattle industry – including producers, veterinarians and industry representatives – must together prepare to implement these policies and regulations. Lucas is using stock and flow value-chain models to understand how cattle markets would adapt to various antimicrobial-use policies.
Decades of use in the cattle industry may have impacted the efficacy of the only FDA-approved drug, chlortetracycline (CTC), to control bovine anaplasmosis, Anaplasma marginale. Bovine anaplasmosis is an infectious blood disease in cattle that causes severe anemia and economic losses for producers. To evaluate the efficacy of CTC, Herd is infecting cattle with a strain of A. marginale, treating some cattle with CTC and monitoring for signs of the disease to better understand antimicrobial resistance.
FFAR award amount $97,500
Total award amount $195,000
Location University of Illinois
Matching Funders Arm & Hammer
The fermentative capacity of enteric microbes allows ruminants to utilize lignocellulose material. This enables ruminants to transform fibrous feedstuffs, from land not suitable for growing human-edible food, into meat, milk, vitamins and minerals. Tondini is enabling precision management of the rumen microbiome to maximize the conversion of these fibrous feedstuffs, while minimizing the environmental impact of ruminant production systems.
FFAR award amount $15,000
Total award amount $30,000
Location Washington State University
Matching Funders Washington State University
Close to 89 percent of the methane produced by livestock comes from the rumen of the animals through a group of microorganisms called methanogens. Stefanini Lopes is identifying key microbes in fermentation to decrease methane production.
Location Pennsylvania State University
Matching Funders Milk Specialties Global
Feeding dairy cows fat supplements provides energy to support high-fat milk production. While this practice is common, it is not widely understood and the efficiency varies. Milk fat contributes to milk prices. Bennett is researching the optimal amount of fatty acids dairy cows need to maximize digestibility, milk fat yield and health. Milk producers can use this research to optimize milk fat production.
Location North Carolina State University
Matching Funders AgBiome
Protecting swine from disease is critical for pig producers. Understanding the swine microbiome, genetic materials such as bacteria and fungi that live inside their bodies, provides insights into health and disease issues impacting pigs. Anderson is investigating potential probiotic options from hardy, outdoor pigs that can improve pig welfare, reduce producer costs and ensure affordable pork products for consumers.
Subscribe to our newsletter for the latest updates.
Email address Submit
Follow FFAR